Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра производственной и экологической безопасности

ОЦЕНКА РАДИАЦИОННОЙ ОБСТАНОВКИ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ

Методическое пособие для практических занятий по дисциплине «Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиационная безопасность» для студентов всех специальностей и форм обучения БГУИР

УДК 621.039 (075.8) ББК 68.69 я 73 О-93

> Авторы: И.С. Асаёнок, А.И. Навоша, А.И. Машкович, К.Д. Яшин

Оченка радиационной обстановки в чрезвычайных ситуациях: Метод. О-93 пособие для практ. занятий по дисциплине «Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиационная безопасность» / И.С. Асаёнок, А.И. Навоша, А.И. Машкович, К.Д. Яшин. – Мн.: БГУИР, 2003. – 18 с.

ISBN 985-444-558-5.

Методическое пособие раскрывает понятия о сущности выявления и оценки радиационной обстановки в чрезвычайных ситуациях. Изложена методика решения и варианты задач для самостоятельной работы. В приложениях приведены справочные материалы.

УДК 621.039. (075.8) ББК 68.69 я 73

Содержание

- 1. Сущность выявления и оценки радиационной обстановки в чрезвычайных ситуациях
- 2. Примеры решения задач
- 3. Задачи для самостоятельной работы

Контрольные вопросы

Литература

Приложение 1 Средние значения коэффициента ослабления дозы облучения Приложение 2 Коэффициент пересчета уровней радиации на любое время, прошедшее после взрыва (К2)

Приложение 3 График для определения продолжительности пребывания в зоне радиоактивного заражения

Приложение 4 График снижения уровня загрязнения в течение периода полураспада цезия-137

Приложение 5 Характеристика радиоактивных веществ

1. Сущность выявления и оценки радиационной обстановки в чрезвычайных ситуациях

Радиационная обстановка может возникнуть при аварии на радиационно опасном объекте (например, атомной электростанции), а также при ядерном взрыве. Под оценкой радиационной обстановки понимают масштабы и степень радиационного заражения (загрязнения) местности, оказывающее влияние на жизнедеятельность населения и работу хозяйственных объектов.

Радиационная обстановка характеризуется двумя основными параметрами: размерами зон заражения и уровнями радиации.

Выявить радиационную обстановку — это значит: определить и нанести на рабочую карту (схему или план) зоны радиационного заражения и уровни радиации. Выявление радиационной обстановки может проводиться двумя способами: путем прогнозирования (предсказания) и по данным радиационной разведки.

Целью прогнозирования радиационного заражения (загрязнения) местности является установление с определенной степенью достоверности местоположения и размеров зон радиоактивного заражения (загрязнения).

Первый способ применяется штабами гражданской обороны хозяйственных объектов и вышестоящими штабами. Данные прогнозируемой обстановки используются для:

- а) своевременного оповещения населения о чрезвычайных ситуациях;
- б) заблаговременного принятия мер защиты;
- в) своевременной постановки задач на ведение радиационной разведки.

Второй способ применяют командиры невоенизированных формирований, а также штабы гражданской обороны хозяйственных объектов.

Исходные данные для оценки радиационной обстановки добываются подразделениями разведки, то есть: постами радиационного и химического наблюдения; звеньями или группами радиационной и химической разведки, а также из информации, поступающей от соседних и вышестоящих штабов гражданской обороны.

В случае аварии на атомной электростанции исходными данными для оценки обстановки будут являться: тип и мощность реактора; время аварии; реальные измерения мощности доз облучения; метеоусловия.

При ядерном взрыве исходными данными являются: вид, мощность и время взрыва; координаты взрыва; реальные измерения доз облучения; метеоусловия.

После выявления обстановки производится ее оценка. Под оценкой обстановки решение действиям понимают задач ПО различным невоенизированных формирований гражданской обороны, производственной деятельности хозяйственных объектов и населения в условиях радиационного заражения (загрязнения). Такими задачами могут быть: определение возможных доз облучения при действиях в зонах заражения; определение допустимого времени начала работ в зоне (начала входа в зону) заражения по заданной (допустимой или установленной) дозе облучения; определение допустимой продолжительности пребывания в зоне заражения по заданной дозе облучения; определение потребного количества смен для выполнения работ в зоне заражения, и другие.

Определение возможных доз облучения за время пребывания в зоне заражения позволяет оценить степень опасности поражения людей и наметить пути целесообразных действий. С этой целью рассчитанное значение дозы облучения сравнивают с допустимой дозой. Если окажется, что люди получат дозу, превышающую допустимую, то необходимо сократить время пребывания в зоне или начать работы позже. Допустимую дозу облучения для личного состава невоенизированных формирований (\mathcal{A}_{don}) устанавливает начальник гражданской обороны хозяйственного объекта, то есть руководитель предприятия.

Допустимая доза по нормам особого периода не должна превышать: при однократном облучении (в течение четырех суток) не более 50 P; при многократном: в течение месяца – 100 P, квартала – 200 P и года – 300 P.

Для определения экспозиционной дозы облучения в результате аварии на радиационно опасном объекте необходимы данные об уровне загрязнения местности спустя некоторое время после аварии ($P_{uзм}$). Затем значение уровня загрязнения местности необходимо выразить через мощность экспозиционной дозы, при условии, что 1 Ku/km^2 эквивалентен 15 mkP/q [3]. Рассчитывая величину эквивалентной дозы от внешнего облучения, следует иметь в ввиду, что 1 mkP/q создает дозу облучения, равную 0,05 мЗв/год.

Экспозиционную дозу облучения X можно рассчитать из выражения

$$X = \frac{P_{\mathcal{X}} \cdot t_p}{K_{QCZ}},\tag{1}$$

где P_{x} — средний уровень радиации за время t пребывания человека в зоне заражения;

 t_p – продолжительность работы, ч;

 $K_{\it ocn}$ — коэффициент ослабления радиации, определяемый по прил. 1.

Определение допустимой продолжительности пребывания в зоне заражения по установленной дозе облучения позволяет оценить целесообразные действия людей на зараженной местности. Для оценки необходимо иметь следующие исходные данные:

а) P_1 – уровень радиации через 1 час после ядерного взрыва, определяемый из выражения

$$P_1 = P_{u_{3M}} \cdot K_2 , \qquad (2)$$

где $P_{u_{3M}}$ – измеренный уровень радиации на некоторое время, Р/ч;

 K_2 — коэффициент пересчета уровня радиации на некоторое время t, прошедшее после взрыва. Он определяется по таблице, приведенной в прил. 2;

- б) t_H время начала пребывания в зоне заражения, в часах;
- в) $\mathcal{I}_{\partial on}$ допустимая (установленная, заданная) доза облучения, Р.

Вначале рассчитывают относительную величину «а» (ее значение необходимо для вхождения в график) из выражения

$$a = \frac{P_1}{\mathcal{I}_{\partial on} \cdot K_{ocn}}.$$
 (3)

Зная значения «а» и время t_{H} , по графику прил. 3 определяют допустимую продолжительность пребывания людей t_{p} на зараженной местности.

Определение потребного количества смен для выполнения работ в условиях заражения местности позволяет исключить переоблучение при выполнении заданного объема работ. Для правильного распределения сил и средств по сменам возникает необходимость расчета требуемого количества смен. Требуемое количество смен N определяется делением суммарной дозы облучения X, которая может быть получена за время работ, на допустимую дозу облучения ($\mathcal{A}_{\partial on}$) для каждой смены, то есть

$$N = \frac{X}{\mathcal{I}_{\partial on}}.$$
 (4)

Суммарная доза облучения Х рассчитывается по формуле

$$X = \frac{5P_{\mathcal{H}} \cdot t_{\mathcal{H}} - 5P_{\mathcal{K}} \cdot t_{\mathcal{K}}}{K_{ocn}},\tag{5}$$

где P_H — уровень радиации (Р/ч) в начале пребывания в зоне заражения на время t_H . Этот уровень радиации определяется из выражения

$$P_{H} = \frac{P_{1}}{K_{2}},\tag{6}$$

где K_2 – коэффициент пересчета на время $t_{\scriptscriptstyle H}$, определяемый по прил. 2;

 P_{κ} — уровень радиации в конце пребывания в зоне заражения на время t_{κ} , определяемое из соотношения

$$t_k = t_H + t_p, (7)$$

где t_p — продолжительность работы, ч.

Затем рассчитывают относительную величину «а» из выражения (3) и, пользуясь графиком (прил. 3), определяют начало и продолжительность работы каждой смены.

2. Примеры решения задач

Задача 1. Определить допустимую продолжительность пребывания рабочих внутри здания цеха, имеющего коэффициент ослабления K_{ocn} = 10, если работы начались через 2 часа после ядерного взрыва, а уровень радиации на это время составил 100 Р/ч. Допустимая доза на время работы составляет $\mathcal{L}_{\partial on}$ = 25 Р.

Решение.

1. Определяем уровень радиации через 1 час после взрыва из соотношения (2):

$$P_1 = P_{u_{3M}} \cdot K_2 = 100 \cdot 2, 3 = 230 \text{ P/y}.$$

2. Рассчитываем относительную величину «а» из выражения (3):

$$a = \frac{P_1}{\mathcal{I}_{\partial on} \cdot K_{oca}} = \frac{230}{25 \cdot 10} = 0, 9.$$

3. По графику (прил. 3) определяем допустимое время пребывания рабочих внутри здания цеха (для а = 0,9 и времени начала облучения 2 часа); оно составит примерно 7,5 часов.

<u>Вывод</u>. В заданных условиях рабочие могут находиться не более 7,5 ч; при этом доза облучения не превысит допустимой (25 P).

Задача 2. Рабочим предстоит вести работы на открытой местности, загрязненной цезием-137. Загрязнение произошло в результате аварии на Чернобыльской АЭС в апреле 1986 г. Уровень загрязнения на указанное время начала работ ($P_{u_{3M}}$) составлял 30 Кu/км². Определить экспозиционную дозу облучения, которую получат рабочие от внешнего облучения в течение 10 часов.

Решение.

1. По графику (прил. 4) определяем уровень загрязнения местности на год проведения практического занятия. Он составит 24 Ku/км², т.е.

$$P_{u3M} = 24 \text{ Ku/km}^2$$
.

2. Выражаем уровень загрязнения местности (Ku/км²) через мощность экспозиционной дозы при условии, что 1 Ku/км² эквивалентен 15 мкР/ч.

$$P_{\chi} = 24 \cdot 15 = 360$$
 мкР/ч.

3. Рассчитываем величину экспозиционной дозы облучения, которую получат рабочие за 10 часов работы из выражения (1),

$$X = \frac{P_x \cdot t_p}{K_{QCZ}} = \frac{360 \cdot 10}{1} = 3600 \text{ MKP} = 3.6 \cdot 10^3 \text{ MKP}.$$

Задача 3. На объекте через 1 час после ядерного взрыва уровень радиации составил 60 Р/ч. Определить количество смен, требуемое для проведения спасательных и других неотложных работ (СиДНР) на открытой местности и продолжительность работы каждой смены, если на выполнение работ требуется 10 часов. Работы начнутся через 1,5 часа после взрыва, а допустимая доза облучения за время работ 30 Р.

Решение.

1. Рассчитываем суммарную дозу облучения за время работы из выражения (5):

$$X = \frac{5P_H \cdot t_H - 5P_K \cdot t_K}{K_{OCI}}$$
:

а) определяем уровень радиации в начале пребывания в зоне заражения (P_H) на время t_H из выражения (6):

$$P_{H} = \frac{P_{1}}{K_{2}} = \frac{60}{1,63} = 37 \text{ P/H};$$

б) определяем уровень радиации в конце пребывания в зоне заражения на время $t_{\scriptscriptstyle K}$, равное

$$t_k = t_H + t_p,$$

где t_p – продолжительность работы, ч.

Тогда

$$t_k = t_H + t_p = 1.5 + 10 = 11.5$$
 часов.

Следовательно,

$$P_k = \frac{P_1}{K_2} = \frac{60}{18,89} = 3,2 \text{ P/y},$$

так как K_2 для 11,5 часов (прил. 2) составляет 18,89.

Таким образом, суммарная доза облучения составит

$$X = \frac{5 \cdot 37 \cdot 1,5 - 5 \cdot 3,2 \cdot 11,5}{1} = 93,5 \text{ P}.$$

2. Определяем потребное количество смен (N) из выражения (4):

$$N = \frac{X}{I_{don}} = \frac{93.5}{30} \approx 3$$
 смены.

3. Определяем начало и продолжительность работы каждой смены. С этой целью рассчитываем относительную величину «а» из выражения (3):

$$a = \frac{P_1}{\mathcal{A}_{\partial On} \cdot K_{OCN}} = \frac{60}{30.1} = 2.$$

Начало работы первой смены принимаем t_{n1} = 1,5 ч. Тогда продолжительность работы первой смены t_{p1} находим по прил. 3, она составит 1,5 часа.

Начало и продолжительность работы последующих смен:

$$t_{H2} = t_{H1} + t_{p1} = 1.5 + 1.5 = 3$$
 часа; $t_{p2} = 4$ часа.

$$t_{H3} = t_{H2} + t_{p2} = 3 + 4 = 7$$
 часов; $t_{p3} = 8$ ч.

Задача 4. Поверхность почвы загрязнена радионуклидом рутений-103 с поверхностной активностью 10 Ku/км². Рассчитать мощность эквивалентной дозы и эквивалентную дозу облучения населения за 1 год.

Решение.

1. Мощность эквивалентной дозы рассчитывается по формуле

$$P_{\mathcal{H}} = A_{\mathcal{S}} \cdot B_{\mathcal{S}\gamma}$$
 ,

где A_s – поверхностная активность радионуклида, $Ku/\kappa m^2$;

 $B_{s\gamma}$ – дозовый коэффициент для гамма-излучения радионуклидов, определяемый по прил. 5. Этот коэффициент измеряется в $3 \text{в·м}^2 / (5 \text{к·c})$.

$$P_{\mu} = 3.7 \cdot 10^{5} \cdot 2.68 \cdot 10^{-16} = 9.9 \cdot 10^{-11} \quad 3_{\text{B/c}}.$$

2. Определим эквивалентную дозу облучения из выражения

$$H = P_H \cdot t = 9.9 \cdot 10^{-11} \cdot 365 \cdot 24 \cdot 3600 = 31.2 \cdot 10^{-4} \text{ 3B}.$$

3. Задачи для самостоятельной работы

Задача 1. Рабочим предстоит вести работы на открытой местности, загрязненной цезием-137. Загрязнение произошло в результате аварии на Чернобыльской АЭС в апреле 1986 г. Уровень загрязнения на время аварии составил $P_{u_{3M}}$, $Ku/км^2$. Определить экспозиционную дозу облучения, которую получат рабочие от внешнего облучения в течение 36-часовой рабочей недели, работая N недель. Исходные данные для расчета приведены в табл. 1.

Таблица 1

Поромотр	Номер варианта							
Параметр	1	2	3	4	5	6		
Уровень загрязнения $P_{u_{3M}}$, $Ku/км^2$	10	25	45	50	15	20		
Время работы N, недель	5	7	6	4	8	9		

Окончание табл. 1

Папамотр	Номер варианта							
Параметр	7	8	9	10	11	12		
Уровень загрязнения $P_{u_{3M}}$, $Ku/\kappa m^2$	30	35	55	60	40	45		
Время работы N, недель	20	18	16	14	12	10		

 $\it 3adaчa$ 2. Поверхность почвы загрязнена радионуклидом М с поверхностной активностью $\it A_s$, $\it Ku/km^2$. Определить мощность эквивалентной дозы и эквивалентную дозу облучения населения за год. Исходные данные для расчетов приведены в табл. 2.

Таблица 2

Попомотр	Номер варианта							
Параметр	1	2	3	4	5	6		
Радионуклид М	Цезий ¹³⁷ Cs	Цезий ¹³⁴ Cs	Кобальт ⁶⁰ Со	Рутений ¹⁰³ Ru	Рутений ¹⁰⁶ Ru	Йод ¹³¹ I		
Активность A_S , Ku/км ²	10	5	4	15	20	15		

Окончание табл. 2

Попомотр	Номер варианта								
Параметр	7	8	9	10	11	12			
Радионуклид М	Плутоний ²³⁹ Pu	Цезий ¹³⁷ Cs	Кобальт ⁶⁰ Со	Рутений ¹⁰⁶ Ru	Йод ¹³¹ I	Цезий ¹³⁴ Cs			
Активность A_S , Ku/км ²	40	14	3	25	10	7			

 $\it 3adaчa$ $\it 3.$ Рабочие ведут работы внутри здания цеха, имеющего коэффициент ослабления $\it K_{ocn}$ через $\it t$ часов после ядерного взрыва. Уровень радиации на $\it t$ часов составлял $\it P_{u3M}$, Р/ч. На время работы установлена доза $\it \mathcal{I}_{don}$, Р. Рассчитать допустимое время работы в здании цеха. Исходные данные для расчета приведены в табл. $\it 3.$

Таблица 3

Парамотр	Номер варианта						
Параметр	1	2	3	4	5	6	
Коэффициент ослабления, K_{ocn}	4	5	7	4	4	6	
Время начала работ после взрыва t , ч	1,5	2,0	2,5	2,5	2,0	2,5	
Уровень радиации $P_{u_{3M}}$, Р/ч	50	45	60	40	65	60	
Установленная доза $\mathcal{A}_{\partial on}$, Р	25	20	30	30	25	20	

Окончание табл. 3

Попомотр	Номер варианта							
Параметр	7	8	9	10	11	12		
Коэффициент ослабления, K_{ocn}	4	3	4	4	6	3		
Время начала работ после взрыва t , ч	1,5	2,0	1,5	2,0	2,0	2,5		
Уровень радиации $P_{u_{3M}}$, Р/ч	70	55	65	70	60	40		
Установленная доза $\mathcal{A}_{\partial on}$, Р	25	30	20	25	20	30		

Задача 4. Определить количество смен, необходимое для проведения спасательных и других неотложных работ на открытой местности и

продолжительность работы каждой смены, если на выполнение работ требуется N часов. Работы начнутся через 1,5 часа после взрыва, допустимая доза облучения за время работ \mathcal{L}_{don} , P, а уровень радиации через 1 час после ядерного взрыва составил P_1 P/ч. Исходные данные для расчета приведены в табл. 4.

Таблица 4

Попомотр	1	Номер варианта							
Параметр	1	2	3	4	5	6			
Необходимое время на выполнение работ N, ч	10	12	11	10	9	13			
Допустимая доза $\mathcal{A}_{\partial on}$, Р	25	30	35	30	25	30			
Уровень радиации на час после взрыва P ₁ , P/ч	50	40	45	55	48	52			

Окончание табл. 4

Попомотр	Номер варианта							
Параметр	7	8	9	10	11	12		
Необходимое время на выполнение работ N, ч	8	10	11	9	10	9		
Допустимая доза $\mathcal{I}_{\partial on}$, Р	20	35	30	35	40	30		
Уровень радиации на час после взрыва P ₁ , P/ч	48	40	35	40	35	50		

Контрольные вопросы

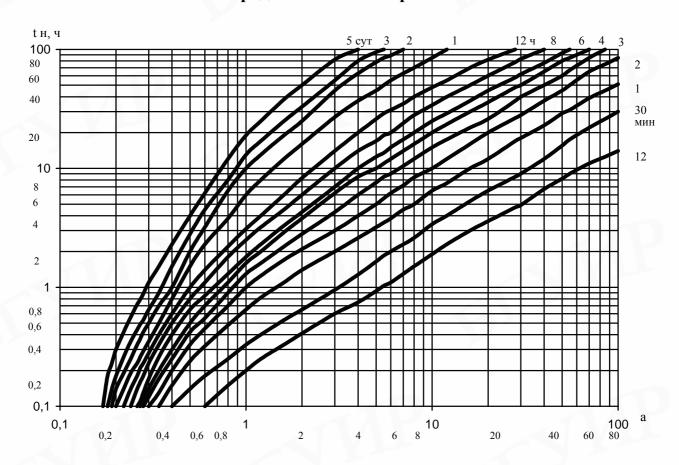
- 1. Что понимают под радиационной обстановкой и в результате чего она может возникнуть?
- 2. Перечислите параметры радиационной обстановки и поясните их сущность.
- 3. Назовите способы оценки радиационной обстановки и поясните их сущность.
 - 4. Поясните цели прогнозируемой радиационной обстановки.
- 5. Перечислите источники, из которых командиры невоенизированных формирований и штабы гражданской обороны могут получить исходные данные для оценки радиационной обстановки.
- 6. Назовите перечень исходных данных, необходимых для оценки радиационной обстановки при аварии на атомной электростанции.

- 7. Назовите перечень исходных данных, необходимых для оценки радиационной обстановки при ядерном взрыве.
 - 8. Что понимают под выявлением и оценкой радиационной обстановки?
- 9. Кто устанавливает допустимую дозу облучения личному составу формирования на время ведения спасательных работ в очаге ядерного поражения?
- 10. Перечислите величины допустимых доз облучения, установленных на время чрезвычайных ситуаций, при однократном и многократном облучении.

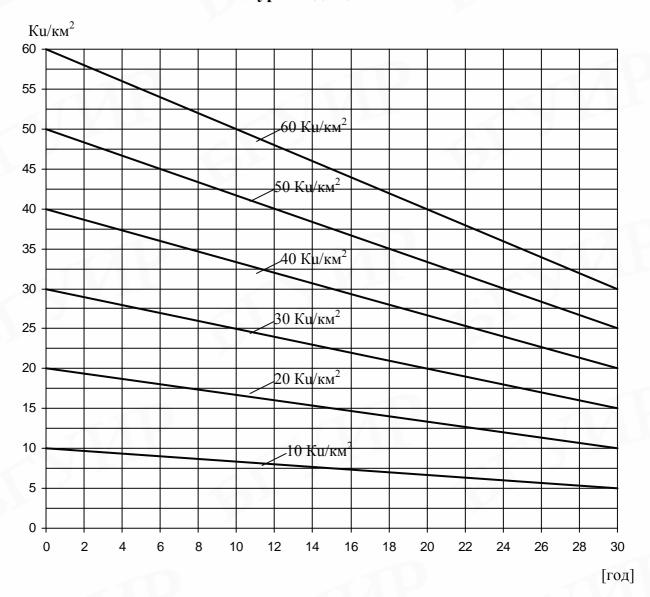
Литература

- 1. Асаенок И.С. и др. Радиационная безопасность. Учеб. пособие. Мн., 2000.
- 2. Демиденко и др. Защита объектов народного хозяйства от оружия массового поражения. Киев: Вища школа, 1989.
 - 3. Люцко и др. Выжить после Чернобыля. Мн.: Выш. шк., 1990.
- 4. Чернобыльская катастрофа: Причины и последствия (экспертное заключение). В 4 ч. / Под ред. В.Б. Нестеренко, Д.С. Фирсовой Мн.: Тест, 1993.

Приложения


Приложение 1 **Средние значения коэффициента ослабления дозы облучения**

Наименование укрытий, транспортных средств или условия расположения людей	K_{ocn}
Открытое расположение на местности	1
Транспортные средства	/
Автомобили, автобусы, троллейбусы, товарные вагоны	2
Пассажирские вагоны, локомотивы	3
Железнодорожные платформы	1,5
Промышленные и административные здания	
Производственные одноэтажные здания (цеха)	7
Производственные административные трехэтажные здания	6
Жилые каменные дома	7
Одноэтажные/подвал	10/40
Двухэтажные/подвал	15/100
Трехэтажные/подвал	20/400
Пятиэтажные/подвал	27/400
Жилые деревянные дома	
Одноэтажные/подвал	2/7
Двухэтажные/подвал	8/12


Приложение 2 Коэффициент пересчета уровней радиации на любое время, прошедшее после взрыва (К2)

t, ч	K_2	t, ч	K_2	t, 4	K_2	t, ч	K_2
0,25	0,19	1,25	1,31	2,5	3,0	3,75	4,88
0,3	0,24	1,5	1,63	2,75	3,37	4	5,28
0,5	0,43	1,75	1,66	3	3,74	4,5	6,08
0,75	0,71	2	2,3	3,25	4,11	5	6,9
1	1,0	2,25	2,65	3,5	4,5	5,5	7,73
	~ 1			A			1 V/V
6	8,59	8,5	13,04	12	19,72	17	29,95
6,5	9,45	9	13,96	13	21,71	18	32,08
7	10,33	9,5	14,9	14	23,73	19	34,21
7,5	11,22	10	15,85	15	25,73	20	36,44
8	12,13	11	17,77	16	27,86	21	38,61

График для определения продолжительности пребывания в зоне радиоактивного заражения

График снижения уровня загрязнения в течение периода полураспада цезия-137

Характеристика радиоактивных веществ

№ п/п	Вещества	$ \begin{bmatrix} \Gamma_{\delta} \\ \frac{\Gamma p \cdot m^2}{E \kappa \cdot c} \cdot 10^{-18} \end{bmatrix} $	$\frac{K_{\gamma}}{[\frac{P \cdot c M^2}{MKu \cdot u}]}$	$\frac{\mathrm{B}_{\mathrm{s}\gamma}}{[\frac{3\boldsymbol{e}\cdot\boldsymbol{m}^2}{\boldsymbol{E}\boldsymbol{\kappa}\cdot\boldsymbol{c}}]}$	T _{1/2}
1	Аргон-41 (⁴¹ Ar)	43,09	6,6		1,8 ч
2	Бром-82 (⁸² Br)	87,3	14,5		35,3 ч
3	Европий-154 (¹⁵⁴ Eu)	43,04	5,02		16 лет
4	Йод-131 (¹³¹ I)	14,2	2,15	$1,93 \cdot 10^{-16}$	8,04 сут
5	Калий-40 (⁴⁰ Ka)				30 лет
6	Кобальт-60 (⁶⁰ Со)	84,63	12,93	$1,15\cdot 10^{-15}$	5,3 года
7	Лантан-140 (¹⁴⁰ La)	75,6	11,14		40,2 ч
8	Марганец-52 (⁵² Ма)	118,3	18,03		271 сут
9	Марганец-56 (⁵⁶ Ма)	55,8	2,28		2,6 ч
10	Медь-60 (⁶⁰ Cu)	7,42	1,12		12,7 ч
11	Мышьяк-74 (⁷⁴ As)	16,74	4,43		26 ч
12	Натрий-22 (²² Na)	78,02	11,9		2,6 года
13	Натрий-24 (²⁴ Na)	119,4	18,55	107	15,005 ч
14	Плутоний-239 (²³⁹ Pu)			$3,73 \cdot 10^{-20}$	24300 лет
15	Полоний-210 (²¹⁰ Pl)				138,4 сут
16	Радий-226 (²²⁶ Ra)		\mathcal{M}		1600 лет
17	Ртуть-203 (²⁰³ Hg)				46,8 сут
18	Рутений-103 (¹⁰³ Ru)	1		$2,68\cdot10^{-16}$	39,3 сут
19	Рутений-106 (¹⁰⁶ Ru)	7,58	1,54	$1,03\cdot10^{-16}$	1 год
20	Стронций-90 (⁹⁰ Sr)				29,12 года
21	Теллур-204 (²⁰⁴ Tl)				3,6 года
22	Цезий-134 (¹³⁴ Cs)	57,44	8,6	$7,83 \cdot 10^{-16}$	2,06 года
23	Цезий-137 (¹³⁷ Cs)	21,33	3,24	$2,91\cdot10^{-16}$	30 лет
24	Цинк-65 (⁶⁵ Zn)				244 сут

Учебное издание

Асаёнок Иван Степанович Навоша Адам Имполитович Машкович Александр Иванович Яшин Константин Дмитриевич

ОЦЕНКА РАДИАЦИОННОЙ ОБСТАНОВКИ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ

Методическое пособие для практических занятий по дисциплине «Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиационная безопасность» для студентов всех специальностей и форм обучения БГУИР

Редактор Т.Н. Крюкова Компьютерная верстка Т.В. Шестакова

Подписано в печать 7.10.2003. Печать ризографическая. Уч.-изд. л. 0,8.

Формат 60х84 1/16. Гарнитура «Таймс». Тираж 300 экз. Бумага офсетная. Усл. печ. л. 1,29. Заказ 358.

Издатель и полиграфическое исполнение:

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники». Лицензия ЛП № 156 от 30.12.2002. Лицензия ЛВ № 509 от 03.08.2001. 220013, Минск, П. Бровки, 6